2-Deoxy-D-glucose regulates dedifferentiation through beta-catenin pathway in rabbit articular chondrocytes.
نویسندگان
چکیده
2-deoxy-D-glucose (2DG) is known as a synthetic inhibitor of glucose. 2DG regulates various cellular responses including proliferation, apoptosis and differentiation by regulation of glucose metabolism in cancer cells. However, the effects of 2DG in normal cells, including chondrocytes, are not clear yet. We examined the effects of 2DG on dedifferentiation with a focus on the beta-catenin pathway in rabbit articular chondrocytes. The rabbit articular chondrocytes were treated with 5 mM 2DG for the indicated time periods or with various concentrations of 2DG for 24 h, and the expression of type II collagen, c-jun and beta-catenin was determined by Western blot, RT-PCR, immunofluorescence staining and immunohistochemical staining and reduction of sulfated proteoglycan synthesis detected by Alcain blue staining. Luciferase assay using a TCF (T cell factor)/LEF (lymphoid enhancer factor) reporter construct was used to demonstrate the transcriptional activity of beta-catenin. We found that 2DG treatment caused a decrease of type II collagen expression. 2DG induced dedifferentiation was dependent on activation of beta-catenin, as the 2DG stimulated accumulation of beta-catenin, which is characterized by translocation of beta-catenin into the nucleus determined by immunofluorescence staining and luciferase assay. Inhibition of beta-catenin degradation by inhibition of glycogen synthase kinase 3-beta with lithium chloride (LiCl) or inhibition of proteasome with z-Leu-Leu-Leu-CHO (MG132) accelerated the decrease of type II collagen expression in the chondrocytes. 2DG regulated the post-translational level of beta-catenin whereas the transcriptional level of beta-catenin was not altered. These results collectively showed that 2DG regulates dedifferentiation via beta-catenin pathway in rabbit articular chondrocytes.
منابع مشابه
The thymoquinone-induced production of reactive oxygen species promotes dedifferentiation through the ERK pathway and inflammation through the p38 and PI3K pathways in rabbit articular chondrocytes
Dedifferentiation and inflammation are major features of cartilage degeneration during the pathogenesis of osteoarthritis (OA). Thymoquinone (TQ) is the major compound of black seed oil isolated from Nigella sativa with various beneficial or harmful effects on several diseases; however, its effects on the dedifferentiation and inflammation of chondrocytes have not yet been characterized. In the...
متن کامل15-Deoxy-Δ12,14-ProstaglandinJ2 Regulates Dedifferentiation through Peroxisome Proliferator-Activated Receptor-γ-Dependent Pathway but Not COX-2 Expression in Articular Chondrocytes
Peroxisome proliferator-activated receptors-gamma (PPAR-gamma) is critical for phenotype determination at early differentiation stages of mesenchymal cells, whereas its physiological role is unclear. Therefore, we investigated the role of 15-deoxy-Delta(12,14)-prostaglandinJ2 (15d-PGJ2), the natural receptor ligand for PPAR-gamma, on dedifferentiation and inflammatory responses, such as COX-2 e...
متن کاملERK-1/-2 and p38 Kinase Oppositely Regulate 15-deoxy-Δ12,14-prostaglandinJ2-Induced PPAR-γ Activation That Mediates Dedifferentiation But Not Cyclooxygenase-2 Expression in Articular Chondrocytes
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcription factor and plays an important role in growth, differentiation, and inflammation in different tissues. In this study, we investigated the effects of 15d-PGJ(2), a high-affinity ligand of PPAR-gamma, on dedifferentiation and on inflammatory responses such as COX-2 expression and PGE(2) production in ...
متن کاملLow-dose γ-radiation inhibits IL-1β-induced dedifferentiation and inflammation of articular chondrocytes via blockage of catenin signaling
Although low-dose radiation (LDR) regulates a wide range of biological processes, limited information is available on the effects of LDR on the chondrocyte phenotype. Here, we found that LDR, at doses of 0.5-2 centiGray (cGy), inhibited interleukin (IL)-1β-induced chondrocyte destruction without causing side effects, such as cell death and senescence. IL-1β treatment induced an increase in the ...
متن کاملSignaling mechanisms leading to the regulation of differentiation and apoptosis of articular chondrocytes by insulin-like growth factor-1.
Cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes. Differentiated chondrocytes in articular cartilage undergo dedifferentiation and apoptosis during arthritis, in which NO production plays a critical role. Here, we investigated the roles and mechanisms of action of insulin-like growth factor-1 (IGF-1) in the chondrogenesis of mesenchymal cells and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental & molecular medicine
دوره 42 7 شماره
صفحات -
تاریخ انتشار 2010